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Abstract
In this paper we investigate the fuzzy identification of brain-code during simple gripping-force control tasks. Since the synchronized oscillatory

activity and the phase dynamics between the brain areas are two important mechanisms in the brain’s function and information transfer, we decided

to examine whether it is possible to extract the encoded information from the EEG signals using the phase-demodulation approach. The EEG was

measured during the performance of different visuomotor tasks and the information we were trying to decode was the gripping force as applied by

the subjects. The study revealed that it is possible, by using simple beta-rhythm filtering, phase demodulation, principal component analysis and a

fuzzy model, to estimate the gripping-force response by using EEG signals as the inputs for the proposed model. The presented study has shown

that even though EEG signals represent a superposition of all the active neurons, it is still possible to decode some information about the current

activity of the brain centers. Furthermore, the cross-validation showed that the information about the gripping force is encoded in a very similar way

for all the examined subjects. Thus, the phase shifts of the EEG signals seem to have a key role during activity and information transfer in the brain,

while the phase-demodulation method proved to be a crucial step in the signal processing.

# 2007 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
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1. Introduction

In this paper we investigate the fuzzy identification of brain-

code during simple gripping-force control tasks.

If we consider the brain as a system of highly interconnected

groups of neurons, each group of neurons acts as an oscillator.

When the brain is in the ‘‘idle mode’’ these groups synchronize

themselves to a certain frequency; alpha for instance. As

proposed by Andrew and Pfurtscheller (1999) and Pfurtscheller

et al. (2003) an external event, such as voluntary finger

movement, causes the beta-rhythm de-synchronization in these

groups of neurons. As observed by Murthy and Fetz (1996)

volitional movements of the hand cause phase lags between

different cortical areas; however, according to the same authors
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and Andrew and Pfurtscheller (1999) the beta-rhythm oscilla-

tions again become synchronized over a larger scale when the

attention to sensorimotor integration is required, binding(-

Singer and Gray, 1995; Manganotti et al., 1998; Pfurtscheller

and Andrew, 1999; Ivanitsky et al., 2001; Fingelkurts et al.,

2005; Schnitzler and Gross, 2005). Synchronization is probably

how the brain achieves the large-scale integration (i.e., binding)

of its many parallel processing activities, allowing coherent

complex brain functioning, cognition and behavior (Engel

et al., 2001; Buzsáki and Draguhn, 2004). Another study

performed by Classen et al. (1998) showed increased coherence

values during the performance of tasks that require visuomo-

toric integration. This means that two brain regions involved in

a process, by means of the synchronization, de-synchronization

of a certain frequency and a constant change of signal phase,

exchange the information needed. In other words, the phase

characteristics of the emitted signals together with their

oscillatory activity represent a possible mechanism of

information coding in the brain (Hopfield, 1995). Since
science Society. All rights reserved.
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Fig. 1. VM task. The thick line represents a sine wave as displayed on the

screen in front of the subject. The thin line represents the subject’s performance

of following the displayed wave by applying a force to the sensor. The dot

represents the current force applied by the subject to the force sensor and was

designated for easier following of the sine wave. The dashed vertical line is only

shown to help the reader understand the scheme better and represents the course

of the time scale. This line was not shown during the actual task performance.
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basically every process in the brain is mediated by

synchronized oscillatory activity, the information related to

it could be encoded in the phase characteristics or dynamics of

this activity; therefore, there should be a possibility to detect

and to decode the exchanged information, not only with

implanted electrodes but also at a more macroscopic level. As

the concept of phase lags is very similar to the phase

modulation of the signals, where the phase shift of the carrier

wave codes certain information, we decided to build a model

based on the phase-demodulation approach of signal pre-

processing.

The goal of the present study was to use EEG data that were

measured during a binding research project at the University

Medical Center Ljubljana and to use phase demodulation and a

fuzzy model to estimate the gripping force of the subjects

involved. The preliminary study results were presented in

Logar et al. (2006); however, this paper presents a more

thorough analysis of the brain signals during gripping-force

control tasks, i.e., there are two more test subjects and three

more tasks in addition to the visuomotor, i.e., the motor, the

visualþmotor and the visuomotor with the left hand. Since the

phase coding has been proposed as a general coding scheme in

brain function (Lisman, 2005; Jensen, 2006), we investigated

whether phase coding would be a valid concept in gripping-

force identification.

2. Materials and methods

2.1. Subjects and EEG recording sessions

In this study we used the data from three healthy, right-handed subjects: two

male, one female (informed consent), aged 29, 27 and 26 years. The EEG

recording sessions took place in a dark, quiet and electromagnetically shielded

room. The subjects were placed on a bed with an elevated headrest to minimize

the tension of the jugular muscle. The tasks were displayed on an LCD screen,

80 cm in front of the subject, using Matlab 5.3 software (Mathworks, 1998).

2.2. EEG and gripping-force data

For the study, two types of measurements were performed. The EEG signals

and the gripping force of the index finger and thumb were measured simulta-

neously. For the recording and data acquisition of the EEG signals a Medelec

system (Profile Multimedia EEG System, version 2.0, Oxford Instruments

Medical Systems Division, Surrey, England) with a standard 10–20 electrode

system and two additional rows of electrodes (FT7, FC3, FCz, FC4, FT8, TP7,

CP3, CPz, CP4, TP8), giving a total of 29 electrodes, was used. We used linked-

ear-reference electrodes, the ground electrode was put on the forehead. The

EEG signals were band-pass filtered to remove frequencies lower than 0.5 Hz

and higher than 70 Hz. The original EEG recordings were sampled with a 256-

Hz sampling frequency. The electrode impedance was kept below 5 kV. For the

gripping-force recording an analog force sensor was used and connected

through a 12-bit PCI-DAS1002 (Measurement Computing Corp. Middleboro,

USA) to a PC. Both recordings were synchronized through the signal that was

sent from the PC and recorded with the EEG recording system. For the force-

data acquisition and the numerical analysis of the signals, MATLAB was used.

The force signal was sampled with a 100-Hz sampling frequency.

2.3. Software tools

For the numerical analysis of the signals we used MATLAB with its

fuzzy logic (Mathworks, 1998), its signal-processing and its statistics

toolboxes. For extracting the different brain rhythms from the original
EEG signal and preventing signal drift 5th-order and 3rd-order Butterworth

filters were used respectively, and the signals were filtered with MATLAB’s

filtfilt function to preserve the phase characteristics of the signal. The EEG

signals were phase demodulated using MATLAB’s demod function, and the

principal component analysis was preprocessed using MATLAB’s prepca

function.

2.4. Experiments

The EEG signals and the gripping force were measured while the subjects

performed four different tasks: the visual task (V), the visuomotor task with the

right (VM) and the left (LVM) hand, the motor task (M), and the visual and

motor task (VþM). The visual task included the observation of a sine wave that

was projected onto the screen in front of the subject. The visuomotor task

included observing the sine wave, representing the amplitude of the desired

gripping force on the screen and following its shape by applying the force to the

sensor with the index finger and the thumb as precisely as possible, as shown in

Fig. 1. The motor task included applying a gripping force to the sensor in the

form of a sine shape of similar amplitude and frequency as in the visuomotor

task; however, the subject was given no visual information on how precisely he

or she was able to achieve the goal. A blank screen was shown to the subject

during the performance of this task. The visual and motor task was similar to the

motor task, except that the subjects had to observe a checker board instead of a

blank screen. Each task was divided into 20 blocks, of which the first part was

active and lasted 25 s and the second part was a pause of 25 s. For this study the

data from VM, LVM, VþM and M tasks was used.

2.5. Signal processing

First, most appropriate brain rhythm or a combination of rhythms for force

estimation model training had to be found. According to what is known in the

field of EEG information-processing, theta (4–7 Hz), alpha (8–12 Hz) and beta

(13–30 Hz) rhythms should be the most suitable inputs to the model. Therefore,

these three rhythms were obtained from the EEG recording, using bandpass

filters. The model was then trained using seven different input combinations:

only theta rhythms, only alpha rhythms, only beta rhythms, theta and alpha

rhythms, alpha and beta rhythms, beta and theta rhythms and finally theta, alpha

and beta rhythms. The best training results were obtained if only beta rhythms

were used as model input.
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Since it is suggested that the phase characteristics of the brain signals could

play an important role in motor control (Hopfield, 1995; Murthy and Fetz,

1996), the EEG signals were phase demodulated. Phase modulation is a method

that modulates the transmitted information or signal as a variation of the carrier-

wave phase. The phase modulation of such a carrier wave can be described by

the following Eq. (1):

yðtÞ ¼ K sin ðvct þ f ðtÞ þ jÞ; (1)

where yðtÞ is the modulated signal, K is the amplitude of the modulated signal,

vc is the carrier frequency, f ðtÞ is the signal containing the information, and j
is the constant phase-shift of the carrier sine wave. The phase demodulation was

calculated with the demod function in Matlab, which uses the Hilbert trans-

formation for calculations. The carrier frequency for the phase demodulation

was chosen experimentally in a way that the transformed signal exhibited no

drift. The frequency was approximately the same for all three subjects; around

20 Hz.

After the phase demodulation a high-pass filter with a cut-off frequency of

0.025 Hz was applied to prevent an eventual drift of the transformed signals.

After that we used a principal components analysis (PCA). The PCA

(Jackson, 1991) is used to transform the original variables into new, uncorre-

lated variables, which are called the principal components, and are linear

combinations of the original variables. The principal components lie along the

directions of maximum variance. Principal component analysis is also known as

eigenvector analysis, eigenvector decomposition, Karhunen-Loéve expansion

or SVD decomposition. The main purpose of the PCA is to represent the

samples in a reduced coordinate system, where only the directions of the

eigenvectors with main variance are taken into account. This means that the

dimensionality of the original data (29 electrodes) can be reduced to a small

number, in this study 5, of the most significant principal components, which

contain 95% of the signal’s information. All the principal components are

linearly independent and therefore do not cause problems with model training

and estimation.

The block diagram of the system for gripping-force estimation used in this

study is shown in Fig. 2.

The scheme (Fig. 2) introduces a nine-sample delay between the occurrence

of the EEG signal and the calculated force. Most of the delay is added by the

filters, where the number of delayed samples corresponds to the order of the

filter. Thus, five samples are added by the first filter (5th-order Butterworth)

which is used for extracting the brain rhythm frequency. Then another sample is

added because of the phase-demodulation calculation. And finally another three

samples are added by the second filter (3rd-order Butterworth) which is used for

preventing an eventual signal drift. The filtering and demodulation algorithms

used in the study are designed to preserve the phase characteristics of the

systems, and therefore the signals processed with the scheme should not

experience delays. However, the algorithms are not causal, and instead of a

nine-sample delay, the scheme produces a signal that provides an indication of

an event occurrence nine samples ahead of the actual occurrence. Considering

the sampling time, this means that the model estimates the gripping force on the

EEG data, which is approximately 35-ms ahead of the gripping force.

2.6. Fuzzy model

In the study presented here, we used a Takagi-Sugeno (TS) fuzzy model.

The model, in Takagi-Sugeno form, approximates a nonlinear system by

smoothly interpolating affine local models (Takagi and Sugeno, 1985). Each

local model contributes to the global model in a fuzzy subset of the space

characterised by a membership function.
Fig. 2. Block diagram of system for the gripping-force estimation from the EEG sig

PCA step.
We assume a set of input vectors X ¼ ½x1; x2; . . . ; xn�T and a set of

corresponding outputs that is defined as Y ¼ ½y1; y2; . . . ; yn�T.

A typical fuzzy model (Takagi and Sugeno, 1985) is given in the form of

rules

Ri : if xk is Ai then ŷk ¼ fiðxkÞ i ¼ 1; . . . ; c (2)

The vector xk denotes the input or variables in premise, and the variable ŷk is the

output of the model at time instant k. The premise vector xk is connected to one

of the fuzzy sets (A1; . . . ;Ac) and each fuzzy set Ai (i ¼ 1; . . . ; c) is associated

with a real-valued function mAi
ðxkÞ or mik : R!½0; 1�, that produces the

membership grade of the variable xk with respect to the fuzzy set Ai. The

functions fið�Þ can be arbitrary smooth functions in general, although linear or

affine functions are normally used.

The affine Takagi-Sugeno model can be used to approximate any arbitrary

function with any desired degree of accuracy (Wang and Mendel, 1992; Kosko,

1994; Ying, 1997). The generality can be proven with the Stone-Weierstrass

theorem (Goldberg, 1976), which suggests that any continuous function can be

approximated by a fuzzy basis function expansion (Lin, 1997).

For generating an initial fuzzy inference system (FIS) we used the fuzzy

subtractive clustering method. Given separate sets of input and output data, this

method generates an initial FIS for the model training by applying fuzzy

subtractive clustering of the data. This is accomplished by extracting a set of

rules that models the data behavior. The rule-extraction method first determines

the number of rules and antecedent membership functions and then uses a linear

least-squares estimation to determine each rule’s consequent equations. A

combination of the least-squares and the backpropagation-gradient-descent

methods were used to train the initial FIS membership function parameters

to model a given set of input/output data.

3. Results

Numerous attempts, with different brain-rhythm combina-

tions as the model inputs, were made to train the fuzzy

inference system to estimate the subject’s gripping force from

the EEG signals. Successful training would show that gripping-

force information encoded in the EEG signals can be

successfully extracted using the proposed methods of signal

processing and a fuzzy model. One period (25 s) of activity was

used for training and the following period of activity, which was

not a part of the training data set, was used for validating the

fuzzy model. The study revealed that satisfactory results can

only be achieved when using beta-rhythm-filtered signals;

therefore, only the results obtained with beta-filtered signals

will be shown subsequently.

In all the figures shown below the thin line represents the

measured gripping force as applied by the subject in a time

period of 25 s, while the thick line is the estimated gripping

force of the fuzzy model. An approximate appreciation of the

force-estimation efficiency was made by calculating the

normalized mean square error (MSE) between the measured

and the estimated force signals.
nals. Initial dimensionality of the input signals is 29 and is reduced to 5 after the



Fig. 3. Gripping force and output of the model for Subject 1 during a VM task. (a) The training period gives MSE ¼ 2:6. (b) The estimation period gives MSE ¼ 33:4.
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Fig. 3 shows the recorded gripping force in comparison to

the fuzzy-model output for the training and estimation period of

the EEG signal for Subject 1.

As shown on the left-hand side of the Fig. 3, it was possible

to train the fuzzy inference system to successfully follow the

subject’s recorded gripping force. From the right-hand side of

Fig. 3, it can be seen that the trained fuzzy model successfully

estimates the subject’s gripping force, which implies that the

information transferred during the estimation period is encoded

in a similar way as during the training period of the EEG signal.

Fig. 4 shows the fuzzy-model response when using the EEG

signals obtained while no motoric action was taken (rest

period). At this point it should be mentioned that the fuzzy

model used for the resting-period estimation was trained using

only the signals from the activity period; therefore, it has no

previously obtained (learned) information about the course of

the force during the resting periods.

As Fig. 4 shows, the estimated force for the resting period

does not include sine waveforms, similar to the activity periods,
Fig. 4. Gripping force and output of the model for Subject 1 during the resting

period. The estimation period gives MSE ¼ 35:3.
which suggests that the estimation results are not a consequence

of using the phase demodulation, PCA or simply a

characteristic of the given fuzzy model acting as a sine-wave

generator. This is also the reason why we decided not to train

the fuzzy model on the rest period EEG data. There is a

substantial peak in the force estimation after 4.5 s (Fig. 4). The

occurrence of the peak could be a consequence of an eye or

muscle artefact or, possibly, a faulty estimation of the model

due to the lack of resting-period training.

Fig. 5 shows the gripping forces recorded and estimated by

the fuzzy model for the estimation periods of a given EEG

signal for all 3 subjects and all 4 tasks. The model training was

successful for all the tasks performed.

As shown in Fig. 5, the force estimation was successful when

the subjects performed the visuomotoric task with the right or

left hand (VM and LVM). When using data from the motoric

(M) or the visual and motoric (VþM) task, the fuzzy model

failed to predict a sine wave similar to the VM tasks. This

implies that the input data to the fuzzy model contains

information about force encoding that can be extracted by the

proposed scheme only when the VM tasks were performed.

Signals from the other 2 tasks (VþM and M) obviously do not

carry the information about the gripping force that could be

extracted using the proposed method, which is reflected in the

poor force estimation and the large values of the MSE criterion.

The estimation also failed when brain rhythms other than beta

were used.

Furthermore, Fig. 6 shows that the fuzzy model, which was

trained using one subject’s data (i.e. Subject 1), gives

satisfactory force estimation even when using the estimation

data from other subjects (i.e. Subject 2 and 3).

This implies that the information about the force is encoded

similarly and that approximately the same brain regions are

active during the performance of the task between all three

subjects.

In this study the Takagi-Sugeno fuzzy inference system was

used with the 5 principal components of the EEG as the input

and the recorded gripping force as the output signal. The

number of input membership functions after training the model



Fig. 5. Comparison of the force estimations between 4 tasks for all 3 subjects. The MSE values represent the estimation quality for each type of task.
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was 45, which results in 9 membership functions per one

principal component (one column) of input signal. Therefore,

since one cluster belongs to each membership function, each

column of input data set was partitioned into 9 clusters. The

number of fuzzy rules was 9 and the shape of the membership

functions was Gaussian.

The fuzzy classifier used in this study is certainly not the

only option and possibly similar results would be obtained

using some other type of model for the force estimation. One of

the possible methods could also be the use of an artificial neural

network.
In Fig. 7 the composition of the five most important principal

components from the EEG electrode signals for the training and

estimation periods of Subject 1’s VM task is shown with respect

to the position of the measuring electrodes. Fig. 7 shows

interpolated absolute values of the EEG signal scores in the

principal components projected on the head, thus indicating the

physiological meaning of the principal components.

The Fig. 7 shows the brain areas that add the most to the

whole variance of the system. It can be concluded that these

areas are the most active during the VM task, as the test subject

was focused on the visuomotoric task at the time. There is a



Fig. 6. Across-subject validation. The model was trained using EEG data from Subject 1. (a) Estimation of the model on data from subject 2 gives MSE ¼ 46:2. (b)

Estimation of the model on data from Subject 3 gives MSE ¼ 52:6.
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noticeable difference in topographies of the training and

estimation periods, which is discussed later.

4. Discussion

In the present paper we investigated fuzzy identification of

the brain-code during simple gripping-force control tasks. As

can be seen from the results, by using phase-demodulated, beta-

rhythm-filtered EEG signals, a fuzzy model can successfully

estimate the course of the gripping force from the brain’s

activity when visuomotoric tasks were performed.
Fig. 7. Composition of the 5 most important principal components from 29

EEG electrode signals. The color bar represents the contribution (in percent) of

each electrode to the whole variance of the EEG signal.
4.1. Signal processing and model training

The authors decided to use phase demodulation as one

of the possible methods for extracting the phase coded

content. At this point it is worth mentioning that phase

demodulation proved to be an appropriate method for a VM

task-force estimation and in fact a crucial step in the signal

processing, since no force estimation was possible when it

was omitted. This suggests that gripping-force information

could be encoded in the phase dynamics of the EEG signals,

which can be extracted using the phase-demodulation

method.

Next, we decided to use PCA for input-data reduction,

since 95% of the EEG signals’ variance could be described

with just five principal components, which shows that there

is a significant correlation between the EEG signals for the

case of gripping-force control. Using signals from all 29

electrodes as inputs to the fuzzy model would create serious

problems with the model training due to the linear

dependency of the signals.

The fuzzy model used for the force estimation was trained

on a 25-s training interval preceding the interval for model

estimation. The reason for choosing a 25-s interval for

training is that the force estimation was actually worse when

using longer intervals; i.e. 50, 75, 100 s, etc. for the model

training. The cause of that is most likely the learning process

that is started in the brain when a certain action is repeated

several times. At the beginning the motor activity is

controlled mostly by feedback; however, as the same action

is repeated several times, feedback is increasingly replaced

by feedforward, as it is quicker than the feedback response.

As the two control schemes are quite different, it is also

expected that involvement of the brain areas changes

gradually. Therefore, when combining the signals from 1,

2, 3, etc. activity tasks for training, the difference in those

signals (because of the learning process) causes problems

with model training, which is also reflected in a poor force

estimation.
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4.2. VM task efficiency

The study revealed that the force estimations were

acceptable only when VM tasks with the right or left hand

were performed. This suggests that visuomotor integration

between visual and motor cortical areas during the VM task

plays an important role in information coding or transfer. One

of the possibilities for a superior force estimation during the

VM tasks could be that functional integration between the

visual and motor areas is mediated by the synchronous

neuronal oscillatory activity (binding), where the execution of

a complex action depends on the harmonized function of

multiple motor and non-motor cortical areas (Ito, 1986). As

mentioned before, it is well known that binding of the brain

areas results in higher coherence values of the signals obtained

from these areas (Classen et al., 1998). Therefore, greater

phase locking of the signals as a result of binding is obviously

the key to easier signal decoding when using the phase-

demodulation approach.

What is also interesting when estimating the gripping force

from a VM task is that the fuzzy model, trained using the data

from Subject 1, not only gives satisfactory results when

estimating the force from the same subject but also manages to

predict the gripping force from Subject 2 and 3 rather well. This

implies that the execution of VM tasks elicits similar responses

or processes and activates approximately the same regions in

the brain of those three subjects.

Whether satisfactory results similar to VM tasks would also

be obtained using the EEG signals recorded during the

imaginative finger movements still needs further research.

However, due to the lack of visual feedback and processes

connected with it during the M and VþM tasks the phase

demodulation seems to be an inappropriate method for the force

estimation. This also shows that the desired level of gripping

force must be visually accessible during the performance of the

task and imagine-only is insufficient. It is therefore obvious that

VþM and M tasks require a different method of signal

processing or a different estimation model, which still needs

additional investigation.

4.3. Topography of PCA components

What is interesting when observing the PCA composition

(Fig. 7) is that the major principal components show a similar

structure with respect to the brain areas, which means that the

majority of the information during the visuomotoric tasks

comes from these regions. The scores of the EEG signals in the

principal components change with time, which is noticeable

from the scores during the training and estimation period

(Fig. 7). This is, as mentioned before, very likely the

consequence of the learning process, which is started when a

certain action is repeated several times.

However, the topography of the PCA components does not

necessarily mean that the electrodes with highest absolute

values also contribute the most to the force estimation. It is

completely possible that the main contribution to the force

estimation is made from the electrodes (areas), which are
represented in the PCA scores in a smaller amount. The reason

for presenting the composition of the transformed EEG signals

is to show that the PCA score’s structure is physiologically

possible and that neither electrode exhibits an unreasonable

deviation from the others.

5. Conclusions

The possibility of identifying the gripping force of a person

from the EEG signals shows that in spite of the fact that

detected brain signals represent a superposition of all the active

neurons, it is still possible to decode some information that is

transferred between the active regions of the brain when the

cooperation of the regions is necessary to accomplish the task.

It seems that during the combined operation of multiple brain

regions during the gripping-force control the information

transfer between the regions is the predominant contribution to

the beta rhythms. Similar conclusions were made by Kristeva-

Feige et al. (2002) and Pfurtscheller et al. (2003), who both

suggest that beta synchronization plays an important role in

motor control. This could explain why the results were much

better for VM tasks than for other tasks, where visuomotoric

integration was not required, and also why the force estimation

was successful only when using beta-range EEG signals.
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Buzsáki, G., Draguhn, A., 2004. Neuronal oscillations in cortical networks.

Science 304 (5679), 1926–1929.

Classen, J., Gerloff, C., Honda, M., Hallet, M., 1998. Integrative visuomotor

behaviour is associated with interregionally coherent oscilations in the

human brain. J. Neurophysiol. 79, 1567–1573.

Engel, A.K., Fries, P., Singer, W., 2001. Dynamic predictions: oscillations and

synchrony in top-down processing. Nat. Rev. Neurosci. 2 (10),

704–716.

Fingelkurts, A.A., Fingelkurts, A.A., Kähkönen, S., 2005. Functional connec-

tivity in the brain—is it an elusive concept? Neurosci. Biobehav. Rev. 28,

827–836.

Goldberg, R.R., 1976. Methods of Real Analysis. John Wiley and Sons.

Hopfield, J.J., 1995. Pattern recognition computation using action potential

timing for stimulus representation. Nature 376 (6535), 33–36.

Ito, M., 1986. Neural systems controlling movement. Trends Neurosci. 9, 515–

518.

Ivanitsky, A.M., Nikolaev, A.R., Ivanitsky, G.A., 2001. Cortical connectivity

during word association search. Int. J. Psychophysiol. 42, 35–53.

Jackson, J.E., 1991. A User Guide to Principal Components. John Wiley &

Sons, Inc., New York.

Jensen, O., 2006. Maintenance of multiple working memory items by temporal

segmentation. Neuroscience 139 (1), 237–249.

Kosko, B., 1994. Fuzzy systems as universal approximators. IEEE Trans.

Comput. 43 (11), 1329–1333.

Kristeva-Feige, R., Fritsch, C., Timmer, J., Lücking, C.H., 2002. Effects of

attention and precision of exerted force on beta range EEG-EMG synchro-

nization during a maintained motor contraction task. Clin. Neurophysiol.

113 (1), 124–131.

Lin, C.H., 1997. Siso nonlinear system identification using a fuzzy-neural

hybrid system. Int. J. Neural Syst. 8 (3).

Lisman, J., 2005. The theta/gamma discrete phase code occuring during the

hippocampal phase precession may be a more general brain coding scheme.

Hippocampus 15 (7), 913–922.



V. Logar et al. / Neuroscience Research 60 (2008) 389–396396
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